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The Nature of the Triplet State in Py-Unsaturated Ketones 

By KENNETH G. HANCOCK* and RONALD 0. GRIDER 
(Depavtment of Chemistry, University of California, Davis, California 95616) 

Summary The phosphorescence spectra and lifetimes of WE report a systematic examination of the phosphorescence 
representative &unsaturated ketones at 77 K are spectra and lifetimes of some representative &unsaturated 
indicative of n ~ *  triplet excited states. ketones,l and present evidence suggesting that TT*, not 

n-n*, triplet states are the photochemically reactive species. 
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The Table summarizes the triplet energies (0-0 band 
values), phosphorescent emission maxima, and mean life- 
times for eleven typical &-unsaturated ketones of varying 
stereochemistry and reaction course. The phosphorescence 
spectra were recorded at  77 K in both ethanol and iso- 
pentane glasses, with no sizeable energy or lifetime dif- 
ferences except where noted. The authenticity of the 
emission spectra was ensured by careful sample purification 
and was verified by comparison of phosphorescence, 

However, the n-m* triplet configuration in (9) has been 
confirmed3 by polarized phosphorescence excitation studies. 
Thus, although some configuration interaction mixing of 
n-r* and n-n* states is reasonable, the emitting triplet 
must be regarded as largely n-n* in nature. 

One exception to the long emission lifetimes is compound 
(4). Although the triplet state lifetime in ethanol is con- 
sistent with a n - ~ *  configuration, the lifetime in isopentane 
is only 5.4ms. The phosphorescence spectrum shows a 

excitation, and absorption spectra. different maximum in 

TABLE 

Compound 

(1) 3-Methylene-2,2,5,5-tetramethylcyclohexanone 
(2) 3-Ethylidene-2,2,5,5-tetramethylcyclohexanone 
(3) Bicyclo[2,2,l]hept-5-en-2-one 

(4) Cyclo-oct-3-en-l-one 

(5) 2,2-Dimethylcyclohept-3-en- l-one 
(6) Chrysanthenone 
(7) 2,4,4-Trimethyl-6-phenylhex-5-en-3-one 

(8) 17 p-Acetoxy-4& 19-0xidoandrost-5-en-3-one 
(9) 4,4-Dimethyl-l7~-acetoxyandrost-5-ene-3,7-dione 

(10) 17~-Acetoxy-4,4-dimethyl-l9-norandrost-5-en-3-one 
(11) Benzobicyclo[2,2,2]octadienone 

Triplet 
energy a 

(kcal mol-I) 

70.7 
68.9 
69.5 

73.7 
68.9 
68.9 
60.9 

Emission 
maximum 

(nm) 

427b 
446 
449 

442b 
480C 
445 
465 
442b 

440C 
44 1 
468 
504 

isopentane, 

Mean 
lifetimed 

(ms) 

205 
156 
190c 

95b 

44 
34 
49 

6 5 C  
28e 
48 

210 

5-4c 

vibrational 

Ref. 

1(c) 
1(d) 
6 

5 

7 
8 
9 

10 

10 
3, 11 

l(a), 12 

From 0-0 phosphorescence band, f 1.5 kcal mol-l, in both ethanol and isopentane glasses at 77 K. b In ethanol. 0 In isopentane. 
* Compares with lit3 value of 32 ms. d Excitation within n-v* absorption band, experimental uncertainty estimated at 10-15%. 

f The triplet reaction is geometrical isomerization.ld 

The observed range of mean lifetimes suggests n-n* 
configurations for all of the emitting triplet states. Al- 
though solvent shifts and vibrational spacing in phosphor- 
escence spectra would not in themselves be definitive 
criteria for the n-n* configuration, those observed were 
consistent with this assignment. Shifts of the 0-0 phos- 
phorescence band to longer wavelength by 2-5nm when 
ethanol replaced isopentane as the medium were observed 
for most of the ketones, as expected for emission from trip- 
lets of the 7 r ~ *  variety. Also, compounds (l), (3), (5), (7), 
(S), (9), (lo), and (1l)t  had spectra with typical T-T* 

vibrational band progressions averaging between 800- 
1400 cm-l, whereas n** ketonic triplets generally have 
vibrational spacing patterns corresponding to carbonyl or 
olefinic stretching frequencies. The shortest lifetime in 
this series was the 28 ms observed for compound (9), whose 
T-T* configuration might therefore seem most in doubt. 

spacing averages 1500 cm-1, perhaps suggesting that an 
n-n* triplet now lies lowest. Such a solvent-induced in- 
version in ordering between nearly degenerate n** and 
n-n* levels has been noted to have photochemical reactivity 
consequences in ocp-unsaturated ketones.4 In (4), however, 
any possible reordering of lowest triplets from n-v* in 
ethanol to n--71* in isopentane apparently does not materially 
affect the photoreactivity of (4), which rearranges to 2- 
vinylcyclohexanone in both polar and non-polar solvents. 

From the assumption that the reactive triplet in solution 
phase photochemistry has the same configuration as the 
lowest triplet in a rigid glass a t  77 K, i t  may be deduced that 
the dichotomous reactivity of Pyunsaturated ketones does 
not derive from either the n-n* vs. n** configuration or 
the energy of the lowest triplet state.:: The triplet energies 
were all closely grouped, [excepting that of (ll)], between 
68-74 kcalmol-l, and all except (4) in isopentane were 

t The remaining spectra were too diffuse to permit accurate determination of vibrational band positions. 

$ Alternatively, the photo-sensitized reaction may involve a nonspectroscopic triplet state. 
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clearly nc-n* triplets, despite the diverging photoreactivities 
that have been reported. 
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